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1. Propositions and Connectives

(a) Definition. A proposition is a statement that has exactly one truth value: either true (denoted
T) or false (denoted F').

(b) Examples.
. “1+1=27
1. “Sarah won a Nobel Prize in economics in 2019”

iii. “x? = 36" (not a proposition because it is true for some x and false for others)

(c) Definition. The negation of the proposition P, denoted =P, is the proposition “not P.” —P
is true when P is false.

(d) Definition. Given propositions P and @, the conjunction of P and @, denoted P A Q, is the
proposition “P and Q).” P A (@ is true when both P is true and () is true.

(e) Definition. Given propositions P and @), the disjunction of P and @), denoted P V @ is the
proposition “P or ).” PV @ is true when P is true or () is true.

(f) Aside. This is known as the “inclusive or,” e.g., “P or @ or both P and @).” There is also an
“exclusive or,” e.g., “P or ) but not both P and ().” Presented as Venn Diagrams:

P Q P Q
Inclusive Or Exclusive Or
PVvQ (P\/Q)/\—'(P/\Q)

(g) Example. For the different combinations of truth values for the propositions P and @, we can
determine the truth values of our various more complicated compound propositions:
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Eggen, and Richard St. Andre, and How To Prove It: A Structured Approach, 2nd ed., by Daniel Velleman. The material
posted on this website is for personal use only and is not intended for reproduction, distribution, or citation. James Banovetz
created the first edition of these awesome notes and graciously shared them.



P 0 Y -Q PAQ PVQ
T T F F T T
T F F T F T
F T T F F T
F F T T F F

(h) Aside. This is known as a truth table. It is a helpful tool that lets us organize the truth value
of propositions and connectives. You won’t use them during the first year coursework, but it
helps us get a sense for the form of logical statements and proofs.

(i) Definition. A tautology is a propositional form that is true for every assignment of truth values
to its components.

(j) Example. Consider the propositional form PV —P:

P -P Pv—P
T F T
F T T

(k) Definition. A contradiction is a propositional form that is false for every assignment of truth
values to its components.

(1) Example. Consider the propositional form P A —P:

P -P PA=P
T F F
F T F

(m) Aside. While these are trivial examples of tautologies and contradictions, they are important
for proofs. ”If and only if” statements are tautologies (which we frequently are trying to prove),
while contradictions are a powerful tool for proving certain propositions.

(n) Definition. Two propositional forms are equivalent if they have the same truth tables.
(o) Example. P and —(—P) are equivalent (draw a truth table for convincing!).

(p) Theorem (SES THM 1.1.1). The following propositional forms are equivalent:

i. Double Negation:
e P and —(—P)

ii. Commutative Laws

e PVvQand QV P
e PNQand QAP

iii. Associative Laws

e PV(QVR)and (PVQ)VR
e PAN(QAR)and (PANQ)AR

iv. Distributive Laws
e PAN(QVR)and (PANQ)V (PAR)
e PV(QAR)and (PVQ)AN(PVR)



v. Idempotent Laws
e PV Pand P

e PAPand P

vi. Absorption Laws
e PV(PAQ)and P

e PAN(PVQ)and P

vii. DeMorgan’s Laws
e 2(PAQ)and ~PV-Q

e 7(PVQ)and -PA-Q

(q) Aside. These are important in formulating proofs, particularly in first quarter microeconomics.
For example, imagine we want to prove the statement “preferences are not complete and transi-
tive” (=(PAQ)). This is equivalent to proving that “preferences are not complete or preferences
are not transitive” (=P V —@Q). Moving between equivalent propositional forms is important,
because it provides insight into what we need to accomplish with the proof. In this case, we

can show =P or —(Q).

2. Conditionals and Biconditionals

(a) Definition. For propositions P and @, the conditional sentence P — () is the proposition
“if P, then Q.” The conditional sentence P = () is true exactly when P is false or () is true.

The truth table associated with P —> () is:

P Q P=qQ
T T T
T F F
F T T
F F T

(b) Example. We can think of P = @ in terms of a promise. For example, consider the promise,
IF I draw [name]’s name, THEN I will pay [name] $10. Then P = “I draw [name|’s name” and

Q = “I pay [name] $10.” Suppose I draw [name]:

i. P is True
ii. If I pay, then @ is True

e [ didn’t break the promise (P = @ is True)

iii. If I don’t pay, then @) is False

e [ broke the promise (P = (@ is False)

On the other hand, suppose I DON'T draw [name]:

i. P is False
ii. If I pay, then @ is True

e I didn’t break the promise (P = @ is True)

iii. If I don’t pay, then @ is False

e [ didn’t break the promise (P = @ is True)
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(k)

Aside. The conditional statement is the most important propositional form in mathematics and
economics. Every “if then” and “implies” statement is a conditional sentence. “IF the minimum
wage is binding, THEN there will be involuntary unemployment.” “The existence of a utility
function IMPLIES complete, transitive preferences.” Note that in common English P — @
contains casual connotations, but this is not the case in mathematics.

Aside. We might also say the conditional as “P is a sufficient condition for @)”.

Aside. In order to prove P = (), we are going to start by assuming P is true and showing )
is true (we will show the first line from the truth table holds, and that the second line does not
hold).

If P is false, then P = () is automatically true for any (). Consider these two propositions:

Dick Startz was the first man on the Moon =— (1 +1= 2)

Dick Startz was the first man on the Moon = (1 +1= 500)

Both of these propositions are true, because the P part is false. Whether () is true or not is
irrelevant. We don’t worry about the line third and fourth lines of this truth table when we are
writing proofs (we get them for free).

Definition. For propositions P and (), the converse of P — (@ is ¢ =— P. The
contrapositive of P — @ is -Q) — —P.

Theorem. (SES THM 1.2.1) The proposition P — (@ is equivalent to its contrapositive
=) = —P. It is not equivalent to its converse () — P.

Expanding the truth table for the conditional P — @Q:

P Q P=>Q -P —iQ —.Q:>ﬂP Q:>P
T T T F F T T
T F F F T F T
F T T T F T F
F F T T T T T

Aside. This is an incredibly useful theorem, despite the fact that it may not be intuitive at
first glance. As mentioned above, moving between equivalent propositional forms can be helpful
when we're writing proofs; few (if any) are as frequently used as the contrapositive.

Definition. For propositions P and (), the biconditional sentence P <= () is the proposition
“Pif and only if Q.” P <= (@ is true exactly when P and () have the same truth values.

The truth table associated with P <= () is:

P Q PsQ
T T T
T F F
F T F
F F T

Aside. Note that we frequently write “if and only if” as iff. All (properly stated) definitions are

biconditionals, as they lay out the exact conditions to meet the definition.

Aside. We might also say the biconditional as “P is a necessary and sufficient condition for ().”
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(1)

(m)

Theorem (SES THM 1.2.2) For propositions P, @), and R:
i. P = (@ is equivalent to (—=P) V @ (definition of conditional)
ii. P <= (@ is equivalent to (P = Q) A (Q = P) (definition of biconditional)

iii. P = (QV R) is equivalent to (P A—-R) = @Q and to (PA-Q) = R
(or in the hypothesis)

iv. P = (@ = R) is equivalent to (P A ) = R) (hypothesis in the conclusion)
v. P = (Q A R) is equivalent to (P = Q) A (P = R)
vi. (PV Q) = R isequivalent to (P = R)A(Q = R)

Aside. If you can’t remember the name of a logical equivalence you want to use, “logic” can be
an acceptable justification for a step in a proof IF it’s obviously equivalent to whoever is grading
it (they are sure you aren’t making it up). So use your best judgment. If it’s not obvious in one
step, try breaking it down into smaller steps.

3. Quantifiers

(a)

(f)

(2)

()

(i)

Aside. Recall that when defining propositions, we saw that 2 = 36 was not a proposition,
because it is true for some x and false for others. However, we might want to say something
about how many values of x make 22 = 36 true. Quantifiers help us express these ideas.

Definition. A statement that contains a variable is called an open sentence. It becomes a
proposition only when its variables are assigned specific values.

Definition. Given an open sentence, the collection of permissible objects available for consider-
ation is the universe of discourse.

Definition. For an open sentence P(x) and universe U, the sentence 3 © € U > P(x) reads
“there exists an x in U such that P(x).” The symbol 3 is called the existential quantifier.

Definition. For an open sentence P(z) and universe U, the sentence 3! z € U > P(z) reads
“there exists exactly one x in U such that P(x).” The symbol 3! is called the uniqueness
existential quantifier.

Definition. For an open sentence (), the sentence V = € U, P(x) reads “for all z in U, P(x).”
The symbol V is called the universal quantifier.

Example. The following are propositions (where R is the set of real numbers):
i. 3z €R 3 2? = 36 (true)

ii. 3!z € R > z? = 36 (false)

iii. Vo eR, z? = 36 (false)

Aside. Essentially, 34 and V take open sentences and make them propositions. 3 means that
there is at least one value that makes an open sentence true (3! means there is exactly one); V
says the open sentence is true for every value. You will use these quantifiers a lot during the
first year classes, so make sure you're comfortable with them.

Aside. In logic and mathematics, specifying what universe you’re considering can be quite
important. In particular, you must be extremely careful in Econ 241A—you’ll be docked points
if you don’t specify the relevant universes (known as supports) for distributions. If the universe
is already completely clear, you can leave it out (some are dropped below to make things easier
to read).



(j) Theorem (SES THM 1.3.1). If P(z) is an open sentence with variable x in universe U, then
i. =(V z, P(x)) is equivalent to 3 = 5 =P (x)
ii. =(32 > P(x)) is equivalent to V z, = P(z)

(k) Example.

e Our universe of discourse is “all social scientists”
e Q(y) = “bad at math”

Consider the statement:

ﬁﬁ% Q@ﬂ

This statement reads, “not, for all social scientists y, y is bad at math,” or, in plain English,
”it is not true that all social scientists are bad at math.”

What would it take for the statement “all social scientists are bad at math” to be false? At
least one that is good at math! In other words: ”there exists a social scientist who is good at
math.”

Jy3Qy)

(1) Example. Suppose you have an exam question: “Weakly dominated strategies cannot be part
of Nash Equilibria. True or False. Provide a proof.”

Knowing that V and 3 are the negations of each other is extremely important for proofs. In this
example, the statement is false. Further, All that is required of the proof is to provide ONE
example where a weakly dominated strategy is part of a NE.

(m) Aside. This gets at an important point: to disprove a “for all” proposition, we just need one
counterexample to prove it’s false. This type of question is very common for the first-quarter
micro sequence!

(n) Example. Let N be the “natural numbers” (i.e., 1, 2, 3, ...). Find the negation of the proposition

JreN>zx<2Ar#1 (a false propostion)
~(FreNsz<2Ax#1) (the negation)
VeeN(z<2Ahz#1) (by SES THM 1.3.1)
VeeNazxz>2vVae=1 (by DeMorgan’s Laws)

This is a true proposition!
4. Basics of Writing Proofs.

(a) Definition. Initial sets of statements assumed to be true are called axioms.

(b) Outline of Proof Writing.

i. List definitions, axioms, previously proved results/theorems, or assumptions (be careful
about assumptions).

ii. At any time, replace statements with equivalent statements

iii. At any time, state tautologies

(¢) Form of Direct Proofs. Suppose we're trying to prove that P = (). direct proofs frequently
look something like:

e List relevant definitions, axioms, theorems, assumptions, etc.



e State “Direct proof to show @” (or equivalent statement)

e Proof:
Let P be true (by hypothesis)
Then replace (by results/theorems)
Consider tautology (by tautology rule)
Then @

Thus, P = Q.
(d) Example. Let = be an integer. Prove that if z is odd, then x 4 1 is even.
e 7 is the set of integers
e Def. of even: y € Ziseven <— dkecZ >y =2k
e Def. of odd: x € Zisodd <— djeZ>3x=2j+1
e Closure property: the sum of two integers is an integer

e Successor property: If x € Z, x has a unique successor x + 1

Direct proof to show: x + 1 is even.

Proof
Let x be an odd integer (by hypothesis)

— dkecZ>x=2k+1 (by def. of odd)

— r+1=02k+1)+1 (by succession/closure)

— v+ 1=2k+2 (by associativity)

— z+1=2(k+1) (by distributivity)

—> (k+ 1)is an integer (by closure)

— x+ 1is even (by def. of even)

|

(e) Form of Proof by Controposition. Suppose we're trying to prove that P —> ). We can prove
the contrapositive instead, as it is an equivalent statement:

e List relevant definitions, axioms, theorems, assumptions, etc.
e State the contrapositive

e State “Proof by contraposition to show —P”

e Proof:
Let =@ be true (by hypothesis)
Then replace (by results/theorems)
Consider tautology (by tautology rule)
Then —P

Thus, P = Q.

(f) Example. Let m be an integer. Prove that if m? is even, then m is even.
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(2)

(i)

2

e Contrapositive: if m is not even, then m~ is not even

e Assumption 1: An integer is odd if and only if it is not even
2

Proof by contraposition to show: m~ is not even
Proof:
Let m be a not even integer (by hypothesis)
= m is odd (by Assumption 1)
— JkecZ>m=2k+1 (by def. of odd)
— m?=(2k+1)° (squaring both sides)
— m® =4k +4k + 1 (expanding)
= m?® = 2(2k* +2k) + 1 (rearranging)
—> 2k* + 2k is an integer (by closure)
— m? is odd (by def. of odd)
= m? is not even (by Assumption 1)

Thus, we have proved the contrapositive of ”if m? is even, then m is even.” Since the contra-
positive is equivalent to the original statement, this is a sufficient proof.

Aside. Note a few points: first, we assumed that an integer is even if and only if it isn’t odd. We
could have proved this, but you always need to take some things as given. Second, we assumed
that the usual rules of algebra held (I didn’t explictitly write down all the steps and associated
assumptions).

When you're actually writing proofs during the first year, you will end up assuming quite a few
things for convenience—just be careful you don’t assume away the proof! Typically after the
first week of so, you won’t need to state things that seem obvious to us, like the rules of algebra
(associativity, etc.) or that 0-a = 0. Again, DO NOT make assumptions that make the proof
trivially easy!

Form of Proof by Contradiction. Proof by contradiction is a powerful tool. First, “suppose
towards contradiction” something that you want to reject (e.g., =R). Then, show a contradiction
(e.g., @ A Q). Finally, you can reject the thing that you supposed (e.g., conclude R).

Say you want to prove (P A Q) = R:

e List relevant definitions, axioms, theorems, assumptions, etc.

e State “Proof by contradiction to show R”

e Proof:
Let PAQ (by hypothesis)
Suppose - R (towards a contradiction)
Then =)
Then Q N =Q
Then R (by contradiction)

Example. Let 22 + y = 13 and y # 4. Prove that x # 3.



To Show: z # 3

Proof:

Let 2° +y = 13 (by hypothesis)

Let y # 4 (by hypothesis)

Suppose © = 3 (towards contradiction)

= (3 +y=13 (algebra)

— y=14 (algebra)

— yF#4andy =4 (logic)

= r#3 (by contradiction)

|

5. Applications

(a) Biconditional Proofs. Suppose we're trying to prove P <= (). There are two ways to approach
the problem: in two parts, or biconditionally.

i. Two-Part Proof (from SES THM 1.2.2)
e Show P — (@

e Show ) — P
e Thus, P < (

ii. Biconditional Proof

e Every line must involve a biconditional:

Let P be true (by hypothesis)
— R (by results/theorems/definitions)
— R, (by results/theorems/definitions)
— @

Example: Show that =(P A Q) if and only if Q) = =P
To Show (=): Q = —P

Proof:

Let =(P A Q) (by hypothesis)
= -PV-Q (DeMorgan’s Laws)
= P=-Q (def. of conditional)
= Q=P (contrapositive)

|

To Show («<): (P A Q)




Proof:

Let Q@ = —P (by hypothesis)
— P = -Q (contrapositive)
= PV -Q (def. of conditional)
— (P AQ) (DeMorgan’s Laws)

[ |

In this case, we can do it on one proof because all of the steps use biconditional relationships

(definitions).
To Show: [(P A Q)] < [Q = —P]
Proof:
Let Q = —-P (by hypothesis)
— P=-Q (contrapositive)
& -PV-Q (def. of conditional)
— (PAQ) (DeMorgan’s Laws)
[

(b) Proofs with Quantifiers Suppose we're trying to prove a “for all” or a “there exists” proposition
P(z). Depending on the quantifier, there are two basic approaches:

i. For-All Proofs

e Pick an arbitrary element in the universe, z € U

e Show that z makes P(z) true
e Because x was arbitrary, it’s true for all z € U

e Don’t put any other restrictions on x after you've selected it, because then it isn’t
arbitrary anymore

ii. There-Exists Proofs

e Pick a specific element in that universe, x € U
e Show that x is in U and makes P(x) true

iii. There-Exists-Unique Proofs

e Pick a specific element in that universe, x € U
e Show that x is in U and makes P(x) true
e Pick an arbitrary y that is in U and satisfies P(z)
e Show that y must equal x
(¢) Proof by Mathematical Induction

Example: For every n € {0,1,2,3,...}, prove that 20 + 2! + ... 427 =27+l 1
To Show: Base case P(0)
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Proof:

Let n =10 (by hypothesis)
— 2'=1 (algebra)
— 2" —1=1 (algebra)
— 2042t 4. g 2n =t (algebra)

To Show: P(n) = P(n+1)

Proof:
Assume 20 4+ 2 4 ... 2 =2nth (by inductive hypothesis)
— 2042t ..o on ottt ol ot (adding 2"** to both sides)
= 7 =2(2") -1 (algebra)
= 7 =2mtl (algebra)
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