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1. Relations

(a) Definition. Let A and B be sets. R is a relation from A to B if and only if R is a subset of
A×B. If (a, b) ∈ R, we write aRb and say a is R-related to b.

(b) Examples. Consider the coordinate system R2 = R×R. We can think of the less-than operator
as a relation <. Namely, the set of all (x, y) such that x < y is a subset of all (x, y) ∈ R2

(c) Example. A very common relation we use in economics is the “preference relation.” Given two
elements a and b, we read a % b as “a is preferred to b.” Much of choice theory can be built
using this relation, including ∼, the “indifference” relation, and �, the “strictly preferred to”
relation.

(d) Definition. The domain of a relation R from A to B is the set

D(R) = {x ∈ A|∃ y ∈ B 3 xRy}

The range of the relation R is the set

R(R) = {y ∈ B|∃ x ∈ A 3 xRy}

(e) Example. Consider the relation R defined to be the set

R =
{

(−1, 5), (2, 4), (2, 1), (4, 2)
}

Then the domain and range of R are, respectively,

D(R) = {−1, 2, 4} and R(R) = {1, 2, 4, 5}

(f) Definition. If R is a relation from A to B, then the inverse of R is the relation

R−1 = {(y, x)|(x, y) ∈ R}

(g) Aside. Note that the inverse of a relation is simply the set with the ordered pairs reversed.
This is distinct from the inverse of a function, which only exists in certain circumstances. The
inverse of a relation, however, lets us think about inverses more generally.

∗These lecture notes are drawn principally from A Transition to Advanced Mathematics, 7th ed., by Douglas Smith,
Maurice Eggen, and Richard St. Andre. The material posted on this website is for personal use only and is not intended
for reproduction, distribution, or citation. James Banovetz created the first edition of these awesome notes and graciously
shared them.
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(h) Definition. Let A be a set and R be a relation on A. Then

• R is reflexive if and only if for all x ∈ A,xRx

• R is complete if and only if for all x, y ∈ A,xRy ∨ yRx

• R is transitive if and only if for all x, y, z ∈ A, xRy ∧ yRz =⇒ xRz

• R is symmetric if and only if for all x, y ∈ A, xRy =⇒ yRx

• R us antisymmetric if and only if for all x, y ∈ A, xRy ∧ yRx =⇒ x = y

(i) Aside. These are potential properties that a relation might satisfy. Be careful not to assume
any unless explicitly stated. Also note that completeness implies reflexivity (i.e., if y = x).

2. Functions

(a) Definition. A function from A to B is a relation f from A to B such that

• the domain of f is A

• if (x, y) ∈ f and (x, z) ∈ f , then y = z.

We write this using the notation f : A =⇒ B, which reads “f maps A to B.” The set B is
called the codomain of f .

(b) Example. In each of the graphs, let {A,B,C,D,E} be domains, and {F,G,H, I, J} be codomains:
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Not a function!
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Function!

The figure on the left does not represent a function for two reasons. First, A maps to more
than one element, violating the second point in the definition. Second, not everything in the
domain is mapped to something in the codomain. The right figure does represent a function, as
everything in the domain is mapped to only one element in the codomain. Note that the range
of a function does not need to be the same as the codomain.

(c) Definition. Let f : A→ B. y = f(x) when (x, y) ∈ f , where y is the value of f at x (or the
image of f at x).

(d) Definition. Let f be a function. f is a real valued function if and only if R is the codomain.
f is a vector valued function if and only if the codomain is Rn for n > 1.

(e) Definition. A function f : A→ B is onto if the range of f is the codomain, i.e.,

R(f) = B

Alternatively, we say that f is a surjection.

(f) Example. We can prove that the function f : R → R defined as f(x) = x + 2 is onto.
Essentially, we need to prove that for all y in the codomain, there exists an x in the domain
such that f(x) = y.

∀y ∈ Rc ∃ x ∈ Rd 3 f(x) = y
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• For universal quantifier proofs, we need to pick a y, show it works

• Closure of the reals

To show: f(x) = y.
Proof:

Let y ∈ R (by hypothesis)

=⇒ y − 2 ∈ R (by closure)

Let x = y − 2 (by hypothesis)

x ∈ R (a tautology)

=⇒ f(x) = (y − 2) + 2 (by def. of x and f)

=⇒ f(x) = y (by associativity)

�

Note that per our format for doing “for all” proofs, we chose an arbitrary value y and show it
worked in general. Thus, it must work for any and all values we could specify for y.

(g) Definition. A function f : A→ B is one-to-one or 1− 1 if and only if whenever f(x) = f(y),
then x = y. Alternatively, we say that f is an injection.

(h) Example. Consider the function f : D → R defined as f(x) = x2. f is a one-to-one function
if the domain does not “cross-zero,” i.e., so long as the domain contains only non-negative or
(exclusive!) non-positive values. For example, it is 1 − 1 if D = [−1, 0] of D = [0, 1], but it is
not 1− 1 if D = [−1, 1].

(i) Definition. A function f : A → B is a one-to-one correspondence, or a bijection, if and
only if f is one-to-one and onto.

(j) Theorem. Let f be a function f : A → B. If f is a bijection, then there exists an inverse
function f−1 : B → A such that for x ∈ A, f−1(f(x)) = x.

(k) Example. Consider one again our function f(x) = x2. While this will always have a inverse (as
defined for relations), this may or may not have an inverse function depending on the domain and
codomain. Consider f : D → R+ where D = [0,∞). Then the inverse function f−1 : R+ → D
is
√
x.

(l) Aside. While we have until now been considering mapping individual elements, we can also
consider mappings of collections of points to sets.

(m) Definitions. Let f : A→ B and let X ⊆ A and Y ⊆ B. The image set of X is

f(X) = {y ∈ B|y ∈ f(x) for some x ∈ X}

and the inverse image is
f−1(Y ) = {x ∈ A|f(x) ∈ Y }

(n) Example. We can prove that the following two sets are equal: f−1(B ∩C) = f−1(B) ∩ f−1(C),
again using a biconditional proof.

• Definition of the inverse image

• Definition of set intersection

• Definition of a subset
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To show: x ∈ f−1(B) ∩ f−1(C).
Proof:

Let x ∈ f−1(B ∩ C) (by hypothesis)

⇐⇒ f(x) ∈ B ∩ C (def. of the inverse image)

⇐⇒ f(x) ∈ B ∧ f(x) ∈ C (by def. of ∩)

⇐⇒ x ∈ f−1(B) ∧ x ∈ f−1(C) (by def. of the inverse image)

⇐⇒ x ∈ f−1(B) ∩ x ∈ f−1(C) (by def. of ∩)

(o) Definition. Let f be a real-valued function whose domain includes interval I. Then f is increas-
ing on I if and only if for all x, y ∈ I, if x < y then f(x) < f(y). Similarly, f is decreasing if
x < y =⇒ f(x) > f(y).

(p) Example. Consider the function f : I → R, where f(x) = x2. f is an increasing function if the
interval I is defined to include only non-negative values, e.g., I = [0,∞); it might be decreasing,
e.g., I = (−∞, 0]; or it might be neither if I = (−∞,∞).

x0

f(x)

(q) Aside. We’ve been using greather-than and less-than (and their weak analogues) symbols for
numbers in R, but we can extend these notions to Rn. First, if x,y ∈ Rn, then x ≥ y if every
element in x is at least as large as every element in y, or xi ≥ yi for all i = 1, . . . , n. Similarly,
we use the notation x >> y if xi > yi for all i = 1, . . . , n

(r) Definition. Let f : D → R where D ⊆ Rn. Then f is

• increasing if and only if f(x0) ≥ f(x1) whenever x0 ≥ x1.

• strictly increasing if and only if f(x0) > f(x1) whenever x0 >> x1.

• strongly increasing if and only if f(x0) > f(x1) whenever x0 6= x1 and x0 ≥ x1

(s) Definition. Let f : D → R where D ⊆ Rn. Then f is

• decreasing if and only if f(x0) ≥ f(x1) whenever x0 ≤ x1.

• strictly decreasing if and only if f(x0) > f(x1) whenever x0 << x1.

• strongly decreasing if and only if f(x0) > f(x1) whenever x0 6= x1 and x0 ≤ x1

3. Sequences

(a) Definition. A function x with domain N is called an infinite sequence. The image of n is
written xn and is called the nth term of the sequence.
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(b) Example. Consider the function x : N→ R defined as

xn =
1

n + 1

The first term of this sequence is 1/2; the 100th term is 1/101. Note that we also frequently
use set notation {xn}∞n=1

(c) Aside. Sequences end up being extremely useful tools in the first year sequences. For example,
concepts like closure and continuity can be defined in terms of sequences; further, there are
concepts in game theory, like trembling hand equilibria, sequential equilibria, minimax regret,
and others.

(d) Definition. For a sequence x of real numbers and a real number L, x has a limit L (or x
converges to L) if and only if for all ε > 0, there exists a natural number N such that if
n > N , then |xn − L| < ε. This may be represented

lim
n→∞

xn = L or xn → L

If no number L exists, then x does not converge (or the limit does not exist).

(e) Aside. While we will be considering this definition using absolute values, note that this is not
necessarily required. We’re thinking in terms of the real number line and our most common
metric for R is d(x, y) = |x − y|. For a more general definition, however, we could use generic
notation d(x, y) in place of the absolute value.

(f) Example. We can show that the sequence x with the nth term

xn =
(−1)n

n + 1

converges to zero. In order to show this, we need to fix a general ε, then find a n “large enough”
to satisfy our definition. Note that the end goal is to show |xn− 0| < ε, so we typically do some
scratch work to find an n that works:

|xn − 0| = |xn| =
∣∣∣∣(−1)n

n + 1

∣∣∣∣ =
1

n + 1
< ε =⇒ n >

1

ε
− 1

Now that we’ve “picked a n,” we can prove that the sequence converges.
To show: |xn − 0| < ε.
Proof:

Let ε > 0 (by hypothesis)

Let N >
1

ε
− 1 (by hypothesis)

Let n > N (by hypothesis)

|xn − 0| =
∣∣∣∣(−1)n

n + 1
− 0

∣∣∣∣ (by def. of xn)

=
1

n + 1
(simplifying)

<
1(

1
ε
− 1
)

+ 1
(n >

1

ε
− 1)

= ε (simplifying)

�
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Basically, we’re picking a very small ε, arbitrarily close to zero, and then picking a very large
N , which depends on the very small ε. If we pick a large enough value, then our sequence is
closer than ε to the limit 0.

(g) Example. Consider the following sequences:

•
{

1,−1, 1
2
,−1

2
, 1
4
,−1

4
, . . .

}
• yn = (−1)n

• {an}∞n=1 = {1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . . }

• xn =
3n2

n2 + 1
The first converges to zero–it oscillates in every smaller degree, getting arbitrarily close to zero.
The second does not converge, as it flips from 1 to −1. The third also does not coverge, as no
matter how large a N we pick, there will always be a 1. Finally, the third sequence converges
to 3.

(h) Theorem (SES THM 4.6.1). If a sequence x converges, then its limit is unique.

(i) Theorem (SES THM 4.6.2). Let a, b and c be sequences of real numbers such that an ≤ bn ≤ cn
for all n ∈ N. If an → L and cn → L, then bn → L. This is known as the sandwich theorem.

(j) Theorem. Let a and b be sequences of real numbers such that an → a and bn → b Then

i. an + bn → a + b

ii. kan → ka for any real number k

iii. anbn → ab

iv. If b 6= 0 and bn 6= 0 for any n, then an/bn → a/b

(k) Example. We can prove the first of these fairly easily.

• an → a ⇐⇒ ∀ ε > 0∃N 3 n > N =⇒ |an − a| < ε

• Triangle inequality: |x + y| ≤ |x|+ |y|
To show: |an + bn − (a + b)| < ε
Proof:
Let ε > 0 (by hypothesis)

Let an → a ∧ bn → b (by hypothesis)

=⇒
(
∃Na3na>Na⇒|ana−a|<ε/2

)
∧
(
∃Nb3nb>Nb⇒|bnb

−b|<ε/2
)

(by def. of convergence)

Let n > max{Na, Nb} (by hypothesis)

|(an + bn)− (a + b)| = |(an − a) + (bn − b)| (a tautology)

≤ |an − a|+ |bn − b| (by the triangle ineq.)

<
ε

2
+

ε

2
(by our assumption)

= ε �

(l) Aside. This is probably more involved than you will need to get with sequential proofs, or
sequences generally, but it is important to have a working knowledge of ε proofs. There are
many results in economics that depend on similar ideas; further, later on we’ll get to more
general ε-concepts that are extensions of this line of reasoning. For the first year, however, we’ll
frequently work with things like εn → 0, without explicitly defining a sequence. The concept of
“trembling-hand perfection” in game theory, for example, relies on the notion of convergence.

6



4. Series

(a) Definition. Given a sequence {an}, an infinite series is an infinite sum of the elements in the
sequence, denoted

∑∞
i=1 ai. The sequence {Sn} is the sequence of partial sums, defined as

Sn =
n∑

i=1

ai

(b) Definition. The series
∑∞

i=1 ai converges to L if the sequence of partial sums converges to L:

Sn → L

(c) Aside. Infinite series are extremely important in your first year classes. In particular, the
geometric series and the Taylor series are used in a wide array of homework problems, theorems,
proofs, etc. While there is a whole field of study dedicated to series, we will make a quick point
about the geometric series now, and talk about the Taylor series in a few classes.

(d) Definition. A geometric series is a series of the form

a + ar + ar2 + ar3 + . . .

(e) Theorem Let a + ar + ar2 + . . . be a geometric series. If a 6= 0 and |r| < 1, then the series
converges to a

1−r . Proof:

Sn = a + ar + ar2 + · · ·+ arn−1 (the partial sum)

rSn = ar + ar2 + · · ·+ arn (multiplying by r)

Sn − rSn = a− arn (substracting)

Sn =
a− arn

1− r
(solving for Sn)

At this point, notice that lim rn = 0 and n→∞, since |r| < 1. Thus:

lim
n→∞

Sn =
a

1− r
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